

3 ANEMIA MEGALOBLÁSTICA

Rubens Thadeu Mangilli de Menezes

DOI: http://dx.doi.org/10.18616/hema03

INTRODUÇÃO

A macrocitose é caracterizada pelo aumento do tamanho da hemácia para valores acima da normalidade. A anemia megaloblástica é um exemplo de macrocitose causada pela disfunção do metabolismo celular do DNA, em que há prejuízo da divisão celular (HOFFBRAND; PROVAN, 1997).

É, portanto, um bloqueio da síntese de DNA por meio do qual a divisão celular se torna lenta em comparação com o crescimento citoplasmático. Isso pode ser causado por deficiência de folato, ou de vitamina B12, ou pelo uso de medicamentos capazes de interferir no metabolismo das purinas e das pirimidinas e na absorção desses nutrientes (HOFFBRAND, 2013). O quadro 1 lista os principais medicamentos envolvidos na anemia megaloblástica.

Quadro 1 – Medicamentos envolvidos na anemia megaloblástica

Alopurinol	Aminosalicilatos	Antiácidos	Ampicilina
Penicilinas	Azatioprina	Capecitabina	Cloranfenicol
Cladribina	Citarabina	Eritromicina	Estrogênios
Fludarabina	Fluorouracil	Gadolíneo	Gemcitabina
Anti-histamínico H2	Hidroxiureia	Lamivudina	Leflunomida
Mercaptopurina	Metformina	Metotrexato	Micofenolato
Nitrofurantoína	Óxido Nitroso	Pentostatina	Fenitoína
Inibidor de Bomba de Próton	Estavudina	Teriflunomida	Tetraciclinas
Tioguaninas	Zidovudina	Trimetoprima	Ácido valpróico

Fonte: Elaboração própria (2019) a partir de Hesdorffer e Longo (2015).

SUMÁRIO

FISIOPATOLOGIA

> Ácido Fólico

Encontrado em vegetais verdes frescos (mais importante), no fígado, na aveia e em algumas frutas. A necessidade diária é de cerca de 50 a 200 mcg — em gestantes, na lactação e durante a hemólise, esse valor pode chegar a 200 a 800 mcg. A maior fonte de reserva é a hepática, que secreta ácido fólico na bile para que ele seja reabsorvido e reutilizado. A reserva total pode variar de 0,5 a 20mg (HOFFBRAND; PROVAN, 1997; HOFFBRAND, 2013).

É absorvido no duodeno e no jejuno proximal, onde há carboxipeptidases capazes de converter o poliglutamato em di ou monoglutamato, prontos para a absorção (HOFFBRAND; PROVAN, 1997). No sangue, o folato circula na forma de metiltetrahidrofolato (MTHF). Ao penetrar nas células, o metil é retirado por uma enzima B12 dependente (metionina sintase) para a formação da metionina, liberando no citoplasma apenas tetrahidrofolato (THF) na forma de poliglutamato (HOFFBRAND, 2013).

> Vitamina B12 (Cobalamina)

Provém da dieta de carnes, ovos e lacticínios. A necessidade diária varia de 0,4 mcg/dia, em crianças, até 2,5 mcg/dia, em adultos, com uma necessidade maior em gestantes e lactantes. O estoque corporal é amplo (2 a 5mg), sendo o principal sítio de armazenamento o fígado (cerca de 50%) — portanto, para que ocorra uma deficiência dietética da vitamina, é necessária a sua má ingestão por um longo período (2 a 3 anos) (HOFFBRAND; PROVAN, 1997; HOFFBRAND, 2013).

A cobalamina é uma molécula complexa, absorvida no íleo distal após uma série de quebras e ligações. Ao ser ingerida, está ligada a pro-

teínas, das quais se dissocia pela ação do suco gástrico com a ajuda da pepsina. Proteínas adicionais, presentes na saliva e chamadas ligantes-R, serão ligadas à vitamina B12 no estômago e desligadas no duodeno, deixando-a apta para se conectar ao Fator Intrínseco (FI) neste local.

O complexo B12-FI é, então, captado em receptores específicos da mucosa do íleo. Ao adentrar o enterócito, liga-se à transcobalamina-II (TC-II) para ser transportado pelo plasma, onde se liga a receptores celulares. Já a cobalamina é metabolizada no meio intracelular em adenosilcobalamina e metilcobalamina.

A adenosilcobalamina é uma coenzima atuante na conversão do metilmalonil-CoA em succinil-CoA na mitocôndria. A metilcobalamina é a coenzima que atua na conversão da homocisteína em metionina, no citoplasma (HOFFBRAND, 2013).

> Causas da Deficiência de Folato e Cobalamina

Os quadros 2 e 3 abaixo elencam as principais causas de deficiência de ácido fólico e vitamina B12, respectivamente.

Quadro 2 – Causas de deficiência de ácido fólico

1. Relacionadas à dieta:
Abuso de drogas
Alcoolismo
Baixa ingesta
Alimentos muito cozidos
Depressão
Residir em asilos
2. Relacionadas à absorção:
Doença celíaca
Doença inflamatória intestinal
Doença infiltrativa intestinal
Síndrome do intestino curto
3. Referentes ao uso de substâncias:
Metotrexato
Trimetoprim
Etanol
Fenitoína

continua...

continuação.

4.	Relacionadas ao aumento do consumo do folato:
Gestaç	ão/lactação
Hemól	lise crônica
Derma	itite esfoliativa

Fonte: Elaboração própria (2019) a partir de Hoffbrand e Provan (1997), Hoffbrand (2013), Hesdorffer e Longo (2015) e Stabler (2013).

Quadro 3 – Causas de deficiência de vitamina B12

1. Relacionadas ao sistema gastrointestinal:
Autoanticorpo antifator intrínseco ou anticélula parietal gástrica (Ex.: anemia perniciosa)
Cirurgia bariátrica/gastrectomia
Gastrite
Gastrite atrófica metaplásica autoimune
Síndrome disabsortiva
Ressecção ileal ou <i>by-pass</i>
Doença inflamatória intestinal
Doença celíaca
Insuficiência pancreática
2. Relacionadas à dieta:
Lactentes em aleitamento materno de mães com deficiência de cobalamina
Dieta vegana
Dieta vegetariana durante a gestação
3. Agentes que interagem na absorção:
Neomicina
Biguanidas (Ex.: Metformina)
Inibidores de bomba de prótons (ex.: Omeprazol)
Anti-histamínicos anti-H2 (Ex.: Cimetidina)
Óxido nitroso usado em anestesia

Fonte: Elaboração própria (2019) a partir de Hoffbrand e Provan (1997), Hoffbrand (2013), Stabler (2013) e Aslinia, Mazza e Yale (2006).

QUADRO CLÍNICO

> Ácido Fólico

A deficiência de ácido fólico pode se apresentar com os mesmos sintomas de anemia da deficiência de B12, com as seguintes diferenças: os sintomas digestivos são mais exuberantes e os sintomas neurológicos não se fazem presentes. Ainda, a deficiência de folato

pode cursar com hiperpigmentação da pele, ou somente das pregas cutâneas (HOFFBRAND, 2013; KUMAR, 2014; REYNOLDS, 2014).

> Vitamina B12

Muitos pacientes com anemia por deficiência de B12 apresentam alterações gastrointestinais e neuropsiquiátricas. Queixas Hematológicas: palpitações, fragueza, cefaleia, irritabilidade. Eventualmente, nota-se petéguias e púrpuras devido à trombocitopenia associada. Quanto às manifestações Gastrointestinais: os pacientes se apresentam, muitas vezes, com glossite, quelite angular, diarreia e perda ponderal (devido à má absorção). Ainda, sobre as manifestações Neurológicas (HOFFBRAND; PROVAN, 1997; HOFFBRAND, 2013): Podem ocorrer com hemograma normal e somente a vit B12 sérica baixa. Os achados são: parestesia em extremidades decorrente da polineuropatia; diminuição da sensibilidade profunda (proprioceptiva e vibratória); deseguilíbrio, marcha atáxica, sinal de Romberg; fragueza e espasticidade nos membros inferiores, com Babinski +, hiperreflexia profunda, refletindo síndrome piramidal; deficit cognitivo, demência, psicose (KUMAR, 2014; REYNOLDS, 2014).

» A anemia perniciosa é uma importante causa de anemia megaloblástica com deficiência de B12. Comum entre 45 e 65 anos, sendo fator de risco para adenocarcinoma gástrico (HOFFBRAND; PROVAN, 1997; HOFFBRAND, 2013).

DIAGNÓSTICO

O hemograma se apresenta com VCM aumentado (principalmente se acima de 110 fL). O CHCM está normal e o RDW pode estar aumentado por causa da anisocitose. Quando associado com outras

anemias (ferropriva e talassemia), o VCM pode estar dentro do limite de normalidade (80 a 100 fL). Pode ocorrer pancitopenia associada (HOFFBRAND; PROVAN, 1997; HOFFBRAND, 2013).

Na hematoscopia, encontra-se a hipersegmentação do núcleo dos neutrófilos, definida pelo seguinte critério: um (1) neutrófilo com pelo menos seis (6) núcleos e presença de pelo menos 5% dos neutrófilos contendo cinco (5) núcleos. Esse achado é praticamente patognomônico da doença. Ainda, pode ser visto anisocitose e poiquilocitose e macroovalócitos (HOFFBRAND, 2013). O mielograma desse paciente geralmente é hipercelular, com a presença de megaloblastos (HOFFBRAND; PROVAN, 1997; HOFFBRAND, 2013; DEVALIA; HAMILTON; MOLLOY, 2014).

A dosagem de B12 e de ácido fólico abaixo de 200 pg/mL e 2ng/mL, respectivamente, é indicativa da doença. A dosagem de ácido metilmalônico e de homocisteína é o melhor parâmetro, embora pouco usado, para o diagnóstico e a diferenciação entre as deficiências. Em deficientes de cobalamina, o ácido metilmalônico está elevado, geralmente > 3500 nmol/L. A homocisteína está elevada nas duas condições (n= 5 a 14 nmol/L) (HOFFBRAND; PROVAN, 1997; HOFFBRAND, 2013; DEVALIA; HAMILTON; MOLLOY, 2014). O LDH e a bilirrubina indireta estão elevados (HOFFBRAND, 2013).

TRATAMENTO

O tratamento com a reposição de folato ou de vitamina B12 deverá ser iniciado em todos aqueles com deficiência documentada, sintomáticos ou não. Em alguns casos, como gestantes e pacientes submetidos a condições de risco (como uso de metotrexato ou gastrectomizados, por exemplo), há indicação de terapia profilática

(HOFFBRAND, 2013; DEVALIA; HAMILTON; MOLLOY, 2014). A via de administração vai depender da urgência em tratar e da condição clínica do paciente, bem como da necessidade de transfusão sanguínea (HOFFBRAND, 2013; DEVALIA; HAMILTON; MOLLOY, 2014).

> Ácido Fólico

A via de administração padrão é de 5 mg diários por 3 a 4 meses, até que se atinjam os parâmetros laboratoriais adequados (HOFFBRAND, 2013; DEVALIA; HAMILTON; MOLLOY, 2014).

> Vitamina B12

Via parenteral: a dose típica em crianças é de 50 a 100 mcg semanais, até que se corrija a deficiência, então passa para doses mensais. Nos adultos, a dose inicial é de 1000mcg semanais, até que a deficiência seja corrigida, passando, em seguida, para doses mensais.

Via oral: em crianças, a reposição oral não é tão eficaz, sendo a via preferencial a parenteral. Em adultos, recomendam-se doses diárias de 1000 a 2000mcg, até que se atinjam os valores normais da vitamina (HOFFBRAND, 2013; DEVALIA; HAMILTON; MOLLOY, 2014).

RESPOSTA AO TRATAMENTO

O pico eritrocitário ocorre em torno de sete a 10 dias. A anemia começa a melhorar em 10 dias e regride totalmente em um a dois meses. Se o tratamento for tardio, sequelas neurológicas podem permanecer (HOFFBRAND, 2013; DEVALIA; HAMILTON; MOLLOY, 2014). Cuidados extras com o sódio e o potássio devem ser tomados, pois pode ocorrer

hipocalemia e retenção de sódio com a terapia (HOFFBRAND, 2013; DEVALIA; HAMILTON; MOLLOY, 2014).

PROFILAXIA

A profilaxia pode ser necessária em casos como gastrectomia, gestação, uso de metotrexato, exposição a óxido nítrico, entre outros. Para tanto, a dose indicada depende da causa da deficiência a proteger. Em gestantes, a indicação é de doses profiláticas de 0,4mg de folato por dia, desde três meses antes da concepção até 12 semanas de gestação. Em casos de gravidez não planejada, deve-se iniciar a terapia no momento da descoberta, desde que seja antes de completar 12 semanas (HOFFBRAND, 2013; DEVALIA; HAMILTON; MOLLOY, 2014).

REFERÊNCIAS

ASLINIA, F.; MAZZA, J. J.; YALE, S. H. Megaloblastic Anemia and Other Causes of Macrocytosis. **Clinical Medicine & Research**, [s.l.], v. 4, n. 3, p. 236-241, 1 set. 2006. Disponível em: http://dx.doi.org/10.3121/cmr.4.3.236. Acesso em: 16 maio 2019.

DEVALIA, V.; HAMILTON, M. S.; MOLLOY, A. M. Guidelines for the diagnosis and treatment of cobalamin and folate disorders. **British Journal of Haematology**, [s.l.], v. 166, n. 4, p. 496-513, jun. 2014. Disponível em: http://dx.doi.org/10.1111/bjh.12959>. Acesso em: 16 maio 2019.

HESDORFFER, C. S.; LONGO, D. L. Drug-Induced Megaloblastic Anemia. **New England Journal of Medicine**, [s.l.], v. 373, n. 17, p. 1649-1658, 22 out. 2015. Disponível em: http://dx.doi.org/10.1056/nejmra1508861>. Acesso em: 16 maio 2019.

HOFFBRAND, A. V. **Fundamentos em hematologia**. 6. ed. Porto Alegre: Artmed, 2013.

HOFFBRAND, V.; PROVAN, D. ABC of clinical haematology: Macrocytic anaemias. **Bmj**, [s.l.], v. 314, n. 7078, p. 430-430, 8 fev. 1997. Disponível em: http://dx.doi.org/10.1136/bmj.314.7078.430. Acesso em: 16 maio 2019.

KUMAR, N. Neurologic aspects of cobalamin (B12) deficiency. **Handbook of Clinical Neurology**, [s.l.], p. 915-926, 2014. Disponível em:http://dx.doi.org/10.1016/b978-0-7020-4087-0.00060-7. Acesso em: 16 maio 2019.

REYNOLDS, E. H. The neurology of folic acid deficiency. **Handbook of Clinical Neurology**, [s.l.], v. 120, p. 927-943, 2014. Disponível em: http://dx.doi.org/10.1016/b978-0-7020-4087-0.00061-9. Acesso em: 16 maio 2019.

STABLER, S. P. Vitamin B12 Deficiency. **New England Journal of Medicine**, [s.l.], v. 368, n. 2, p. 149-160, 10 jan. 2013. Disponível em: http://dx.doi.org/10.1056/nejmcp1113996>. Acesso em: 16 maio 2019.