

RESISTÊNCIA DO CIMENTO ÁLCALI-ATIVADO EM REPARO DE FISSURAS

Bruna Juvêncio Frasson (1), Bruno do Vale Silva (2)

UNESC – Universidade do Extremo Sul Catarinense (1)brunajfrasson@hotmail.com, (2)dovalesilva@unesc.net

RESUMO

A construção civil vem evoluindo por meio do desenvolvimento técnico científico de recursos e materiais. Mesmo com todo o desenvolvimento e inovação, existem casos de patologias nas estruturas, implicando na deterioração estrutural. Entre muitos tipos de patologias há a fissuração. Uma das formas de reparo é o enchimento por gravidade. A indústria de cimento Portland vem enfrentando desafios, portanto existem pesquisas para o desenvolvimento de materiais alternativos ao cimento Portland, entre os quais aparecem aqueles produzidos de compósitos com polímeros e geopolímeros. O objetivo deste trabalho é a caracterização da pasta de cimento álcali-ativado e a análise do seu desempenho, apresentando por meio do ensaio de compressão e os modos de ruptura os resultados desejados. Foram moldados corpos de prova cúbicos e para os experimentos se utilizou como variáveis os tipos de fissuras nos corpos de prova e a forma que elas foram recuperadas. As fissuras foram induzidas nos corpos de prova por meio de chapas de aço durante a concretagem. Se utilizou a pasta de cimento álcali-ativado, para o reparo das fissuras e o adesivo epóxi Compound®Adesivo da Vedacit[®]. Sete dias antes da ruptura dos corpos de prova, foram aplicados os reparos. Realizou-se o ensaio de compressão axial para a determinação da resistência à compressão aos 28 dias. Por meio dos resultados obtidos conclui-se que pela análise estatística (ANOVA) os grupos não apresentaram variações significativas da resistência à compressão com coeficiente de significância de 91,366%, porém os resultados mostraram uma queda da resistência de 13% para os sem reparo e 3,7% nos com reparo. Os modos de ruptura mostraram resultados semelhantes entre si, e singular entre os grupos de amostras de controle, sem reparo e com reparos.De uma maneira geral conclui-se que os reparos com cimento álcali-ativado e epóxi são similares e eficazes no controle da fissuração do concreto.

Palavras-Chave:reparos, fissuras, cimentos, álcali-ativados, geopolímeros.

1. INTRODUÇÃO

A construção civil vem evoluindo desde seus primórdios, por meio do desenvolvimento técnico científico de novos materiais, técnicas construtivas, cálculos precisos e melhor detalhamento dos projetos.

Artigosubmetido ao Curso de Engenharia Civil da UNESC - como requisito parcial para obtenção do Título de Engenheiro Civil

Mesmo com todo o desenvolvimento e inovação, existem falhas involuntárias e casos de imperícia, que causam patologias nas estruturas, implicando na deterioração estrutural.

Entre muitos tipos de sintomas patológicos, existe a fissuração da estrutura de concreto armado, que é classificada como um processo físico de deterioração. Souza (1998, p.14) afirma que esses fatores podem ser facilmente evitados, por meio de uma elaboração precisa do projeto, escolha dos materiais corretos e ainda pelos métodos de execução. Entretanto, outros fatores não são fáceis de evitar como sobrecargas não previstas, choques, sismos, impactos ou incêndios. Souza (1998, p. 57) afirma:

"As fissuras podem ser consideradas como a manifestação patológica característica das estruturas de concreto, sendo mesmo o dano de ocorrência mais comum e aquele que, a par das deformações muito acentuadas, mais chama a atenção dos leigos, proprietários e usuários ai incluídos, para o fato de que algo anormal está a acontecer". (Souza 1998, p. 57)

As principais causas de fissuras em concreto são originadas por meio de falhas técnicas e humanas, quando nos estados fresco e endurecido.

No estado fresco as principais causas são, retração plástica e fissuras de assentamento. No estado endurecido são, retração por secagem, tensões térmicas, reações químicas, intemperismo, corrosão da armadura, práticas construtivas de baixa qualidade, erros de detalhamento e projeto. (ISSA et. al., 2007).

Existem várias maneiras de reparos de estruturas em concreto, entre elas está o enchimento por gravidade, o principal objetivo dessa técnica é o preenchimento da fissura a fim de unir o concreto estruturalmente. ISSA (*et. al.*, 2007), afirma que esse tipo de técnica não deve ser utilizado em fissuras que estão se movimentando.

Segundo QUESADA (2003, p. 303), o reparo de fissuras por injeção consiste na aplicação por injeção de materiais adesivos e de baixa viscosidade que após o endurecimento permitem a restauração das propriedades da estrutura. Essa injeção pode ser por meio de pressão de bicos injetores, ou por meio da pressão da gravidade. Usualmente utiliza-se resina epóxi, pois forma uma película de polímero que funciona como selante, evitando a penetração de água e materiais altamente agressivos ao concreto armado.

Conforme SCHNEIDER(2001, p. 642), a indústria de cimento Portland vem enfrentando desafios, como diminuir o consumo de energia, reduzir as emissões de gás carbônico e garantir materiais de excelente qualidade, portanto existem pesquisas para o desenvolvimento de materiais alternativos ao cimento Portland, entre os quais aparecem aqueles produzidos com alto teor de adições minerais, compósitos com polímeros e geopolímeros, ou subprodutos industriais como cinzas e escórias que são ricos em sílica e alumina (NEMATOLAHI *et al.*, 2014).

Esses cimentos álcalis-ativados possuem excelente resistência mecânica, elevada durabilidade (KOMNITSAS e ZAHARAKI, 2007), baixa retração (DUXSON et. al., 2007), rápido endurecimento (KOMNITSAS e ZAHARAKI, 2007), boa resistência aos ácidos (DUXSON et. al., 2007), boa resistência ao fogo (KOMNITSAS e ZAHARAKI, 2007) e baixa condutividade térmica (DUXSON et. al., 2003), apresentando comportamentos semelhantes às resinas epóxis, utilizadas em reparos de estruturas.

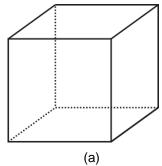
Esse trabalho tem como objetivo a caracterização da pasta de cimento álcali-ativado e a análise do seu desempenho, ao substituir a resina epóxi no reparo de fissuras induzidas em corpos de prova de concreto, apresentando por meio do ensaio de compressão e modos de ruptura os resultados desejados.

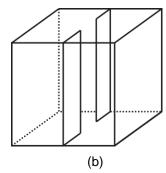
2. MATERIAIS E MÉTODOS

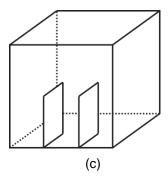
O objetivo dos procedimentos experimentais foi analisar as características de uma pasta de cimento Álcali-Ativado quando está em substituição a uma resina epóxi, no reparo de uma fissura, e comparar com os resultados de amostras de referência.

Foram moldados corpos de prova cúbicos conforme determina a norma europeia NP EN 12390-1:2003, com as arestas de 15 cm. Para os experimentos foram utilizados como variáveis os tipos de fissuras nos corpos de prova e a forma que elas foram recuperadas, conforma indica a Tabela 1, seguindo as especificações dos experimentos executados por ISSA (et. al., 2007).

As fissuras foram induzidas nos corpos de prova conforme mostra a Figura 1, por meio de chapas de aço com espessura de 2 mm, tendo as dimensões de 35 mm x 150 mm e 50 mm x 70 mm (largura x altura) denominadas respectivamente de FG e


FP. Sendo que em FG as chapas foram posicionadas no centro das faces paralelas e em FP as chapas estão fixadas no terço médio de uma mesma face.


Figura 1: Corpos de Prova. (a) M, (b) FG e (c) FP.



Fonte: Do Autor, 2015.

Tabela 1: Variáveis de estudo.

Tipos de Fissuras	Corpos de Prova	Material de Recuperação	
Sem fissuras	M	-	
	FG	Sem recuperação	
FG	FGE	Epóxi	
	FGG	Álcali-Ativado	
	FP	Sem recuperação	
FP	FPE	Epóxi	
	FPG	Álcali-Ativado	

2.1. MATERIAIS

Foi utilizada a pasta de cimento álcali-ativado, para o reparo das fissuras (FGG e FPG), constituída de Metacaulim (MK), proveniente do argilomineral Caulim, calcinado à 800°C, hidróxido de sódio (NaOH) da Sigma Aldrich e Silicato de Sódio (Na₂OSiO₂.H₂O) com 63% de água como ativadores, da Sigma Aldrich.

A partir de estudos realizados por Pelisser *et al* (2013) a composição terá relação molar Na₂OSiO₂/NaOH de 1,6, conforme indica as Tabelas 3 e 4, e características nanomecânicas como mostra a Tabela 2, conforme Menger, Frasson&Pelisser (2013).

Tabela 2: Características da Pasta de Cimento Álcali-Ativado.

rabela 2. Caracteristicas da rasta de Cimento Alcan-Ativado.				
Resistência à Compressão 7 dias	64,0 (MPa)			
Módulo de Elasticidade	10,0 (GPa)			
Dureza	0,4 (GPa)			
Densidade*	1,5 (g/cm³)			

Fonte: Pelisser et al 2013. *Obtidos por meio de ensaio (NBR 9778).

Os valores de densidade foram obtidos por meio de ensaio de determinação da absorção de água por imersão – Índices de vazios e massa específica (ABNT NBR 9778:2009). Utilizando a Equação 01 chegou-se ao resultado da densidade (g/cm³) da pasta de cimento álcali-ativado.

$$D = \frac{ms}{msat - mi}$$
 Equação (01)

Em que; D = densidade real ou massa específica real (g/cm³)

ms = massa seca em estufa (g)

msat = massa saturada em água após 24h (g)

mi = massa submersa em água (g)

A mistura do geopolímeros foi realizada aplicando-se o NaOH ao Na₂OSiO₂/NaOH, e em seguida o Metacaulim (MK), a mistura foi realizada numa argamassadeira durante um período de cinco minutos.

Artigosubmetido ao Curso de Engenharia Civil da UNESC como requisito parcial para obtenção do Título de Engenheiro Civil

unesc

Tabela 3: Composição química do Metacaulim (% peso).

Elementos	Metacaulim (800°C)
Al_2O_3	45,2
SiO ₂	53,4
Perda ao fogo	0,4

Fonte: Pelisser et al, 2013.

Tabela 4: Relação Molar do Cimento Álcali Ativado.

Composição	Relação Molar
SiO ₂ /Na ₂ O	6,94
SiO_2/Al_2O_3	3,20
Na_2O/AI_2O_3	0,46
Na ₂ O/SiO ₂	0,14
Na ₂ OSiO ₂ /NaOH	1,60
H ₂ O/MK (g/g)	0,75

Fonte: Pelisser et al, 2013.

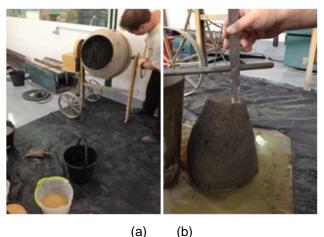
Para o reparo das fissuras (FGE e FPE), foi utilizado o adesivo epóxi Compound®Adesivo da Vedacit®, que é um adesivo estrutural bi componente à base de epóxi, que tem as suas características mostradas na Tabela 5. É um produto recomendado para selagem de trincas com bicos injetores, possui alta adesividade, baixa viscosidade, alta resistência química e mecânica.

Tabela 5: Características do Adesivo Estrutural Compound®Adesivo

Tabela 5. Caracteristicas do Adesivo Estrutural Compound Adesivo					
Resistência à Compressão 7 dias	69 (MPa)				
Resistência de Aderência ao Concreto 7 dias	4,72 (MPa)				
Módulo de Elasticidade	-				
Densidade	1,80 (g/cm ³)				

Fonte: Disponível em: http://www.vedacit.com.br/neu/produtos.php?33.14 Acesso em: Março de 2015.

O concreto foi misturado na relação 1:2,58:2,92 (cimento:areia:brita), e água/cimento (a/c) de 0,45 com teor de argamassa de 55%. Utilizou-se o cimento CP IV, brita 1 que é um agregado com diâmetro máximo de 19 mm e areia média com módulo de finura máxima característica de 2,44 e diâmetro máximo de 2,4 mm conforme determina a ABNT NBR 7211/1983.



2.2 MÉTODOS

Os corpos de prova foram concretados (Figura 2) vinte e um dia antes da aplicação dos adesivos para o preenchimento das fissuras induzidas. Foi medido também o abatimento do tronco de cone como estabelecem as normas técnicas, e chegou-se numa média de 10,5 cm (dentro do estabelecido de 10±2 cm). Após o endurecimento os corpos de prova foram submetidos à cura submersa por 28 dias até o ensaio de compressão.

Figura 2: Procedimentos da Concretagem. (a) Mistura e (b) Slump Test.

Fonte: Do Autor, 2015.

Sete dias antes da ruptura dos corpos de prova, foram aplicados nos corpos de prova FGE e FPE o adesivo epóxi Compound[®]Adesivo da Vedacit[®], e nos FGG e FGG a pasta de cimento álcali-ativado, por meio da metodologia do reparo por gravidade, conforme Figura 3.

Durante o procedimento de moldagem verificou-se que o epóxi possui um comportamento mais viscoso em relação à pasta de cimento álcali-ativado, propriedade essa verificada por meio dos valores de densidade dos materiais (Tabelas 2 e 5).

Para a determinação da resistência à compressão aos 28 dias utilizou-se, uma máquina universal de ensaios (EMIC/PC 200 I, capacidade de 2000 kN.), conforme mostra a Figura 4. Antes da ruptura os corpos de prova foram capeados com a utilização de uma pasta de cimento de relação a/c de 0,4, para deixar as superfícies

uniformes para a aplicação das cargas, o ensaio de compressão seguiu a NP EN 12390-3:2009.

Figura 3: Reparo das Fissuras. (a)Reparo FGE, (b) Reparo FGG, (c) Reparo FPE e (d) Reparo FPG.

Figura 4: Representação da carga nos corpos de prova. (a) M, (b) FG e (c) FP.

3. RESULTADOS E DISCUSSÕES

3.1. ANÁLISE DOS RESULTADOS DO ENSAIO DE COMPRESSÃO

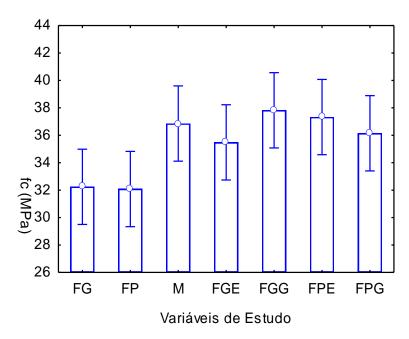

Realizou-se uma análise estatística, através da metodologia análise de variância (ANOVA) a fim de se verificar a influência do tipo de configuração de cada corpo de prova na variável resposta resistência à compressão (Tabela 6 e Figura 5). Essa análise mostrou que os tipos de configurações dos corpos de prova forneceram valores de resistência à compressão estatisticamente iguais, com um nível de confiança de 91,366%.

Tabela 6: Detalhes da análise de variância aplicada nos resultados de resistência à compressão para cada tipo de configuração de corpo de prova.

Variável	Graus de Liberdade	Soma dos Quadrados	Médias Quadradas	Fc	Pr>Fc
Tipo de Configuração	6	22,15	132,91	2,1793	0,08634
Erro	21	10,16	213,46		

Fonte: Do autor, 2015.

Figura 5: Resultados de resistência à compressão pelo tipo de configuração de cada corpo de prova.

Realizou-se uma análise dos resultados conforme mostra a Tabela 7, das diferenças entre o grupo de controle (M) para os grupos sem reparo (FG e FP), sendo elas relevantes, com uma redução média de resistência de -12,5% e -13,0% respectivamente, o que se torna significativo na análise de resistência de elementos estruturais.

A Tabela 8 mostra que não houve variação de resistência significativa entre o grupo de controle (M) e os grupos com reparo, com médias de -3,7% (FGE), +1,3% (FPE), 2,6% (FGG) e -1,9% (FPG).

Tabela 7: Resultados do Ensaio de Compressão Grupos de Controle e sem Reparo

Numeração	Tipo	Dimensões	fc (MPa) {D.P.}	% Variação
01	M	149x150	36,0	-
02	M	150x146	42,2	-
03	M	150x151	37,7	-
04	M	148x151	31,6	-
		Média	36,9 {3,3}	
05	FG	150x151	32,8	-11,0
06	FG	151x150	33,6	-8,8
07	FG	151x150	28,9	-21,5
08	FG	152x152	33,6	-8,7
		Média	32,2 {2,2}	-12,5
09	FP	149x151	34,9	-5,4
10	FP	152x150	31,7	-14,1
11	FP	151x149	27,6	-25,1
12	FP	151x149	34,2	-7,2
		Média	32,1 {3,3}	-13,0

Fonte: Do autor, 2015.

Analisando os resultados das Tabelas 7 e 8, onde foi verificada a variação média da resistência entre os grupos FG, FGG, FGE, FPG, FPE em relação ao grupo de controle (M), chegou-se à Tabela 9. Mostrando que os grupos FG e FP possuem variação de resistência inaceitável, já os demais grupos possuem resistências aceitáveis (esse critério foi estabelecido para que uma variação máxima de ±5,0% fosse considerada aceitável).

Resultados do Ensaio de Compressão Grupos com Reparo Tabela 8:

Numeração	Tipo	Dimensões	fc (MPa) {D.P.}	% Variação
13	FGE	150x150	38,8	+ 5,4
14	FGE	152x153	32,8	-11,0
15	FGE	150x152	37,8	+2,5
16	FGE	153x151	32,5	-11,8
		Média	35,5 {3,3}	-3,7
17	FPE	152x150	34,6	-6,2
18	FPE	151x154	40,1	+8,9
19	FPE	151x151	40,9	+10,9
20	FPE	152x150	33,7	-8,6
		Média	37,3 {3,7}	+1,3
21	FGG	153x151	37,8	+2,6
22	FGG	152x153	39,9	+8,3
23	FGG	152x152	38,1	+3,4
24	FGG	152x151	35,4	-3,8
		Média	37,8 {1,8}	+2,6
25	FPG	152x152	32,1	-13,0
26	FPG	151x152	38,0	+3,0
27	FPG	151x151	36,6	-0,8
28	FPG	151x151	38,0	+3,0
		Média	36,1 {2,8}	-1,9

Fonte: Do autor, 2015.

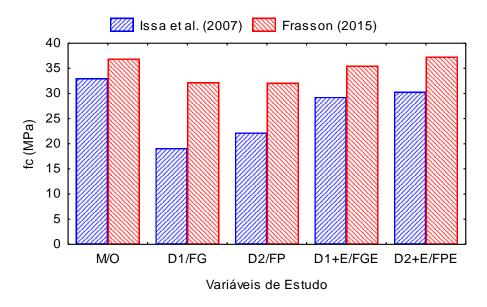
Tabela 9: Redução na Força de Compressão

Tipo	fc (MPa)	% Variação	Análise
M	36,9	-	-
FG	32,2	-12,5	Inaceitável
FP	32,1	-13,0	Inaceitável
FGE	35,5	-3,7	Aceitável
FPE	37,3	+2,6	Aceitável
FGG	37,8	+1,3	Aceitável
FPG	36,1	-1,9	Aceitável

Fonte: Do autor, 2015.

A Tabela 10 mostra os resultados encontrados por ISSA et. al. (2007), que demonstram os valores de resistência à compressão, obtidos e a variação entre os

corpos de prova com reparo (D1+E, D2+E) e sem (D1, D2) em relação ao corpo de prova maciço (O).


Tabela 10: Resultados obtidos por ISSA et.al. (2007).

Tipo	fc (MPa)	% Variação	Análise
0	33,0	-	-
D1	19,1	-40,9	Inaceitável
D2	22,2	-32,7	Inaceitável
D1+E	29,3	-11,3	Aceitável
D2+E	30,3	-8,2	Aceitável

Fonte: ISSA et.al. (2007).

A Figura 6 mostra a comparação entre os resultados obtidos durante este experimento, com os de ISSA *et.al.* (2007), mostrando que os corpos de prova sem reparo não perderam tanto a resistência quanto os de ISSA *et. al.* (2007). Já os corpos de prova que foram reparados com epóxi mostraram um comportamento semelhante, onde não houve diferença significativa na resistência à compressão em relação aos corpos de prova de referência.

Figura 6: Comparação dos Resultados obtidos entre o Autor e ISSA et.al.(2007).

Fonte: Do Autor (2015). ISSA et.al. (2007).

3.2. MODO DE RUPTURA

A análise experimental do modo de ruptura serve como parâmetro para complementar, modelos computacionais que simulem o comportamento dos materiais e elementos estruturais com esforços similares aos testados nesta pesquisa. Deste modo, considerando a importância dessa área para a Engenharia foi observado e analisado o modo de ruptura nos corpos de prova com intuito de caracterizar tendências e modelos de ruptura.

Pode-se observar que nos corpos de prova M a ruptura foi característica de um corpo de prova cúbico maciço, como mostra a Figura 7.

Nos corpos de prova sem reparo foi possível observar que apresentaram estreitamento da fissura induzida e destacamento do concreto nas laterais livres, provocando fissuras paralelas a aplicação da carga conforme as Figuras 8 (a) e 9 (a).

Os corpos de prova reparados mostraram que as fissuras induzidas não se deslocaram, ou seja, os materiais de reparo apresentaram rigidez e resistência satisfatória, e também boa aderência com o concreto, conforme pode ser observado nas Figuras 8 (b e c) e 9 (b e c).

Figura 7: Modo de Ruptura dos Corpos de Prova M.

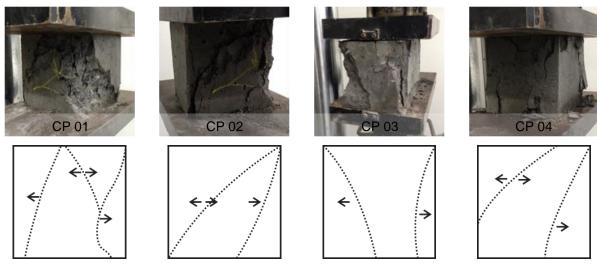


Figura 8: Modo de Ruptura dos Corpos de Prova (a) FG (b) FGE e (c) FGG.

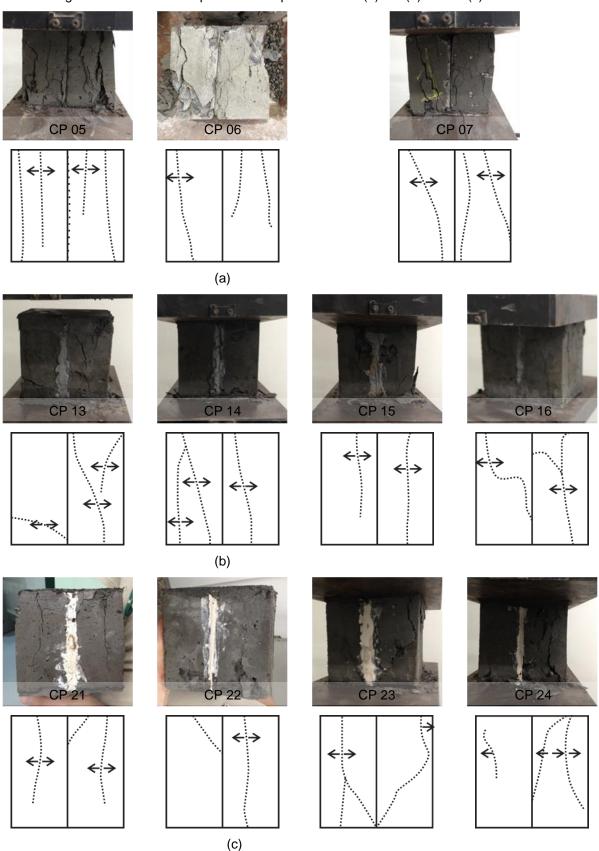
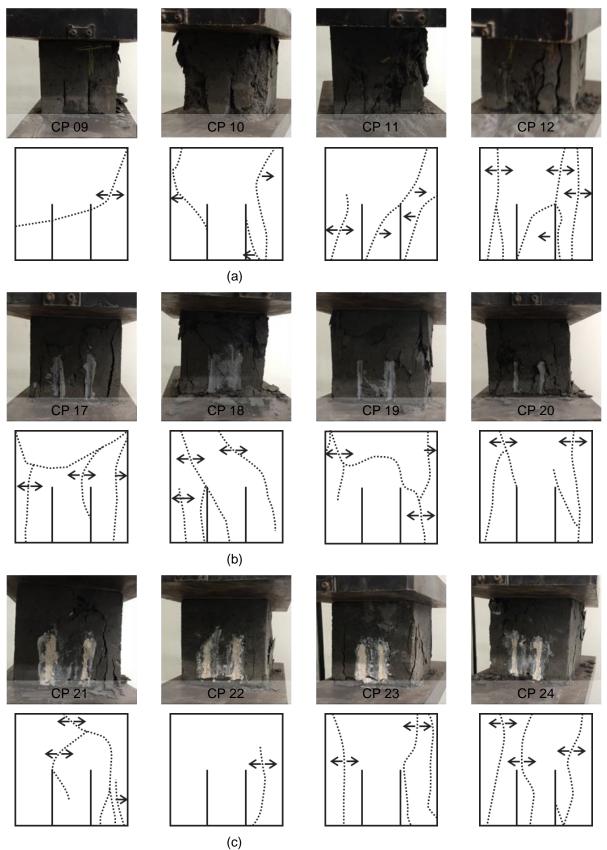
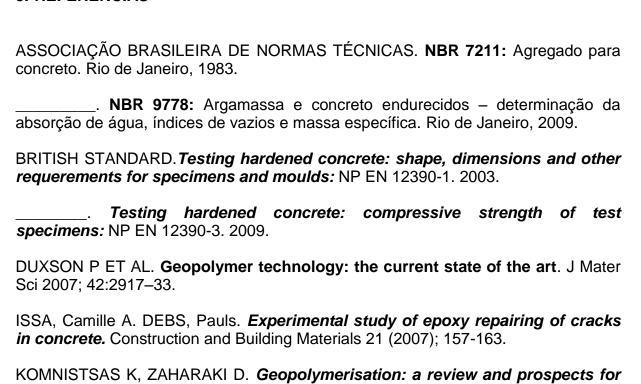



Figura 9: Modo de Ruptura dos Corpos de Prova (a) FP, (b) FPE (c) FPG.

4. CONCLUSÕES

Quanto aos resultados de resistência à compressão das variáveis estudadas conclui-se que:

- O Cimento Álcali-Ativado se mostrou menos viscoso facilitando a trabalhabilidade no reparo das fissuras, o que não se verificou com a resina epóxi adotada.
- Pela análise estatística (ANOVA) os grupos não apresentaram variações significativas da resistência à compressão com coeficiente de significância de 91,366% e ρ_{value}~0,086, porém os resultados mostraram uma queda da resistência média de 12,7% nos corpos de prova sem reparo, mostrando-se uma redução considerável. Os corpos de prova que receberam reparos (FGG, FGE, FPG e FPE) apresentaram variação máxima de 3,7%, de uma maneira geral os reparos com cimento álcali-ativado e epóxi são similares e eficazes no controle da fissuração do concreto.
- Analisando o trabalho de ISSA *et.al.*(2007), os corpos de prova sem reparo mostram resultados com reduções de resistência em torno de 40%, ou seja, muito superiores aos resultados obtidos neste trabalho que possuem uma média de 12,7%. Entretanto o reforço com epóxi de ambos os trabalhos obtiveram melhorias, a queda na resistência ficou em torno de 10% para o trabalho de ISSA *et.al.*(2007) e 3% para o presente trabalho.
- Quanto aos modos de ruptura foi verificado que as amostras maciças apresentaram resultados característicos. Os corpos de prova sem reparo apresentaram estreitamento das fissuras induzidas e aparecimentos de fissuras paralelas à aplicação da carga. Os corpos de prova com reparo mostraram que as fissuras induzidas não se deslocaram, mostrando rigidez e resistência satisfatórias dos materiais utilizados, atribuindo ao corpo de prova desempenho esperado.


Sugestões para trabalho futuros:

- Utilizar uma resina epóxi de menor densidade, para garantir a fluidez durante o reparo.
- Aumentar a espessura das fissuras, para que possa ser verificada uma variação maior da resistência entre os grupos de análise.

5. REFERÊNCIAS

MENGER, M. H. FRASSON, B. J. PELISSER, F. MICHEL, M. D, **Analise** nanomecânica de geopolímero à base de metacaulim. Anais do 55º IBRACON 2013; 2175-8182.

the minerals industry. Miner Eng (2007); 20:1261-77.

NEMATOLLAHI, B. SANJAYAN, J. SHAIKH, F. U. A. *Comparative deflection hardening behavior of short fiber reinforced geopolymer composites.* Construction and Building Materials 70 (2014); 54-64.

PELISSER, F. GUERRINO, E.L., MENGER, M. MICHEL, M.D., LABRINCHA, J.A. *Micromechanical caracterization of metakaolin-based geopolymers. Construction&BuildingMaterials*, v. 49, p. 547-553, 2013.

QUESADA, Gaby. Procedimentos de Reparo. In:_____. **Manual de Reparo, Proteção e Reforço de Estruturas de Concreto.** São Paulo: Red Rehabilitar, 2003. p. 281-327.

SCHNEIDER, M. ROMER, M. TSCHUNDIN, M. BOLIO, H. **Sustainable cement production – present and future.**Construction and Building Materials 41 (2011); 642-650.

SOUZA, VICENTE C. D. RIPPER, THOMAZ. **Patologia, recuperação e reforço de estruturas de concreto.** São Paulo, PINI (1° ed.), 1998, 260p.

VEDACIT®. Catálogo técnico Compounde® adesivo. Disponível em: http://www.vedacit.com.br/neu/produtos.php?33. Acesso em: Março de 2015.