CAPÍTULO 6 ICTERÍCIA NEONATAL

Liana Boff Cé Nicole Figueredo Natália Effting Crema Beatriz Geremias dos Santos Isabelle Cechinel Getúlio Rocha

http://dx.doi.org/10.18616/pratneo06

INTRODUÇÃO

Icterícia é definida como coloração amarelada da esclera e da pele a partir do aumento dos níveis séricos da bilirrubina²². Sendo que a icterícia neonatal torna-se clinicamente evidente quando os níveis ultrapassam 5 mg/dL^{13, 21}. Na primeira semana de vida, cerca de 60% dos RN a termo e 80% dos prematuros podem evoluir com icterícia⁴. Na maioria dos casos, trata-se de um fenômeno fisiológico e autolimitado, porém, em algumas situações, a hiperbilirrubinemia em neonatos pode ocasionar a encefalopatia bilirrubínica aguda^{22, 26}.

MANIFESTAÇÕES CLÍNICAS

A icterícia neonatal fisiológica é a forma mais comum, secundária às limitações do metabolismo da bilirrubina, resultantes da imaturidade hepática¹⁴. Se manifesta clinicamente em RN a termo com surgimento após 24 a 48 horas de vida, pico entre o 3° e 4° dia de vida e normalização dentre 5 a 7 dias, com progressão para resolução espontânea na maioria dos casos, entretanto em bebês prematuros, tal período pode ser prolongado¹⁹. No quadro patológico, caracteristicamente apresenta-se com icterícia nas primeiras 24h de vida de maior gravidade, podendo ser decorrente de acúmulo tanto da bilirrubina direta, quanto da indireta¹⁹.

DIAGNÓSTICO

A abordagem de investigação etiológica pode ser dividia de acordo com causas de hiperbilirrubinemia direta ou indireta, conforme quadro abaixo:

QUADRO 1 - Causas bilirrubina indireta x direta

	BILURRUBINA INDIRETA	BILIRRUBUNA DIRETA
CAUSAS:	Incompatibilidade Rh e ABO, esferocitose hereditária, eliptocitose, deficiência de G6PD, asfixia neonatal, hipotireoidismo, síndrome de Down, síndrome de Gilbert, adaptação fisiológica fetal.	Sepse, infecções congênitas, atresia biliar, hepatite neonatal, galactosemia, fibrose cística, tirosinemia, deficiência de alfa 1 antitripsia, colestase por hiperalimentação.

FONTE: elaborado pelos autores.

Fatores envolvidos na maior probabilidade de desenvolver a icterícia neonatal²⁴.

- Idade gestacional menor que 38 semanas
- Um irmão anterior com icterícia neonatal que requer fototerapia
- Intenção da mãe de amamentar exclusivamente
- Icterícia visível nas primeiras 24 horas de vida

Na avaliação clínica do exame físico, é possível observar a extensão da icterícia por meio da progressão céfalo-caudal da coloração amarelada cutânea a partir da classificação de Kramer por delimitação de zonas¹⁶.

- **Zona 1:** rosto e pescoço, BST entre 4 e 8 mg/dLl.
- **Zona 2:** tronco até o umbigo, níveis entre 5 e 12 mg/dL.
- **Zona 3:** virilha e parte superiores das coxas, BST entre 8 e 16 mg/dL.
- **Zona 4:** joelhos e cotovelos até os tornozelos e pulsos, BST entre 11 e 18 mg/dL.
- **Zona 5:** chega aos pés e mãos, incluindo palmas e solas, níveis entre 15 mg/dL ou mais.

Entretanto, apenas a visualização não deve ser usada para estimar com segurança os níveis de bilirrubina, pois existem diversas variáveis que podem interferir, como a experiência do profissional avaliador, a iluminação do ambiente e a tonalidade da pele do RN. Porém, a ausência completa de icterícia nessas regiões pode ser um indicativo de que o bebê não desenvolverá hiperbilirrubinemia significativa^{15,20}.

A esclera e a conjuntiva são livres de melanina e possuem alta afinidade pela bilirrubina, quando icterícia conjuntival é visível é um sinal de hiperbilirrubinemia clinicamente relevante, sendo também uma maneira de avaliar paciente com peles mais pigmentadas^{3,20}.

O diagnóstico inicial é realizado a partir da avaliação dos níveis de bilirrubina sérica, utilizando amostras de sangue ou dispositivos de medição transcutânea². A partir da medida de bilirrubina, prossegue-se a investigação com demais exames laboratoriais².

- Hemograma completo.
- Tipagem sanguínea materna e fetal.
- Teste de coombs direto.
- Marcadores de lesão hepática: aspartato aminotransferase e alanina aminotransferase.
- Contagem de reticulócitos.
- Teste de G6PD.
- Esfregaço de sangue periférico.

Utiliza-se o termo "hiperbilirrubinemia significante" para BST maior que 17 mg/dL; "hiperbilirrubinemia grave" quando BT > 25 mg/dL; e "hiperbilirrubinemia extrema" para BST > 30 mg/dL⁵.

TRATAMENTO

Níveis altos de bilirrubina devem ter intervenção rápida para evitar a progressão para neurotoxicidade irreversível, portanto, é importante iniciar conduta com fototerapia ou transfusão de troca dentro de 24-48h¹². Para auxílio na tomada de decisão dentre os esquemas terapêuticos, pode ser utilizado o Nomograma de Buthani, sendo mais recomendado para RN com mais de 35 semanas de idade gestacional e peso ao nascimento maior de 2.000g¹⁹.

A primeira linha de tratamento é a fototerapia pela maior eficácia na redução dos níveis de bilirrubina, bem como menor incidência de efeitos colaterais 28 . De acordo com o estado clínico do RN em conjunto com o valor da BST, a intensidade da irradiância da luz é determinada, sendo que o esquema padrão, com irradiância de 8-10 $\mu W/cm2$ por nanômetro é recomendado para quadros leves e sem hiperbilirrubinemia grave ou significante, ao contrário de modalidade de alta intensidade, na qual a irradiância de 30 $\mu W/cm2$ por nanômetro é indicada para níveis significativamente elevados de BST. Apesar de poucos efeitos colaterais, ainda pode causar como efeito colateral diarreia, hipertermia e exantema eritematoso 9,10,17,27 .

O uso de exsanguinotransfusão é indicado na falha da fototerapia ou RN com BST extremamente elevada ou sinais clínicos de kernicterus²⁵. Desse modo, através da técnica *pull-push* pelo de cateter umbilical central, realiza-se a troca do sangue do recém-nascido por outro de um doador compatível, com a remoção da bilirrubina por ser uma porção sensível de hemácias e anticorpos²⁵. O sangue da substituição não possui antígenos sensibilizadores, logo, sem antígenos A e B e o Rh negativo. Entretanto, apesar de ser eficaz, ainda pode ocorrer complicações em até 1% dos RN após o procedimento, como sepse, distúrbios hidroeletrolíticos, arritmias cardíacas, trombose da veia porta, entre outros²⁷.

O uso de imunoglobulina, que utiliza anticorpos selecionados, tem como principal alvo a doença hemolítica do recém-nascido, relacio-

nado, principalmente, ao sistema ABO e Rh. As gestantes Rh D-negativas, quando genitor Rh D- positivos, correm risco de aloimunização Rh devido à possibilidade de exposição a um antígeno fetal derivado do pai. Assim, visando a diminuição desses casos, é realizado profilaxia com 300 μg de imunoglobulina anti-D na 28^a semana de gestação na mãe não sensibilizada, quando o tipo sanguíneo do feto for desconhecido ou Rh positivo^{1,11}.

Icterícia persistente por mais de 2 semanas de idade deve investigar BST e bilirrubina direta (BD), caso BD > 20% do total, é necessário investigação imediata para atresia biliar 7 .

IMAGEM 1 - Identificação de icterícia no RN

FONTE: elaborado pelos autores.

REFERÊNCIAS

1. ALSALEEM, M. Intravenous immune globulin uses in the fetus and neonate: a review. *Antibodies*, [s.l.], v. 9, n. 4, p. 60, 4 nov. 2020.

- 2. ANSONG-ASSOKU, B. *et al.* Neonatal jaundice. Treasure Island: StatPearls Publishing, 2024. Disponível em: https://www.ncbi.nlm. nih.gov/books/NBK532930/. Acesso em: 7 abr. 2025.
- 3. AZZUQA, A.; WATCHKO, J. F. Bilirubin concentrations in jaundiced neonates with conjunctival icterus. *The Journal of Pediatrics*, [s.l.], v. 167, n. 4, p. 840–844, 1 out. 2015.
- 4. BATTERSBY, C. *et al.* Term admissions to neonatal units in England: a role for transitional care? A retrospective cohort study, [*s.l.*]: *BMJ Open*, 1 maio 2017. Disponível em: https://bmjopen.bmj.com/content/7/5/e016050. Acesso em: 7 abr. 2025.
- 5. BRANCO DE ALMEIDA, M.; DRAQUE, C. Sociedade Brasileira de Pediatria. Departamento de Neonatologia. Documento científico: icterícia no recém-nascido com idade gestacional > 35 semanas. Rio de Janeiro: SBP, 2012. Disponível em: https://www.sbp.com.br/fileadmin/user_upload/pdfs/Ictericia_sem-DeptoNeoSBP-11nov12. pdf. Acesso em: 7 abr. 2025.
- 6. CARNEIRO, S. A. M. *et al.* Revisão de literatura acerca dos tratamentos de hiperbilirrubinemia neonatal / Literature review about neonatal hyperbilirubinemia treatments. *Brazilian Journal of Health Review*, [s.l.], v. 3, n. 5, p. 13606–13619, 2020.
- 7. CHOOSING WISELY CANADA. Paediatric surgery recommendations. 2025. Disponível em: https://choosingwiselycanada.org/recommendation/paediatric-surgery/. Acesso em: 11 abr. 2025.
- 8. CONDE-AGUDELO, A.; DÍAZ-ROSSELLO, J. L. Kangaroo mother care to reduce morbidity and mortality in low birthweight infants. *In: Cochrane Database of Systematic Reviews* [Internet]. [s.l.]: Cochrane Neonatal Group, 2016. Disponível em: http://doi.wiley.com/10.1002/14651858.CD002771.pub4. Acesso em: 7 abr. 2025.
- 9. CONFESSOR, M. V. A. *et al.* Hiperbilirrubinemia neonatal: etiopatogênese e manejo. *ARACÊ*, v. 7, n. 2, p. 7446–7462, 1 fev. 2025.

- 10. EBBESEN, F.; DONNEBORG, M. L. Clinical overview of phototherapy for neonatal hyperbilirubinaemia. *Acta Paediatrica*, [s.l.], v. 113, n. 10, p. 2199–2202, 2024.
- 11. FUNG-KEE-FUNG, K. *et al.* Guideline No. 448: Prevention of Rh D alloimmunization. *Journal of Obstetrics and Gynaecology Canada*, [*s.l.*], v. 46, n. 4, 1 abr. 2024. Disponível em: https://www.jogc.com/article/S1701-2163(24)00260-3/abstract?utm_source=chatgpt.com. Acesso em: 7 abr. 2025.
- 12. GODOY, C. D. *et al.* Icterícia neonatal: atuação do enfermeiro frente à identificação precoce e tratamento. *Research, Society and Development*, [s.l.], v. 10, n. 15, p. e386101522765, 28 nov. 2021.
- 13. GROSSE, S. D.; PROSSER, L. A.; BOTKIN, J. R. Screening for neonatal hyperbilirubinemia—First do no harm? *JAMA Pediatrics*, [s.l.], v. 173, n. 7, p. 617–618, 1 jul. 2019.
- 14. KAPLAN, M. *et al.* Neonatal jaundice and liver disease. 2011. p. 1443–1496. Disponível em: https://www.researchgate.net/publication/290140357_Neonatal_jaundice_and_liver_disease. Acesso em: 7 abr. 2025.
- 15. KEREN, R. *et al.* Visual assessment of jaundice in term and late preterm infants. *Archives of Disease in Childhood Fetal and Neonatal Edition*, [*s.l.*], v. 94, n. 5, p. F317–F322, 1 set. 2009. Disponível em: https://fn.bmj.com/content/94/5/F317.long. Acesso em: 7 abr. 2025.
- 16. KRAMER, L. I. Advancement of dermal icterus in the jaundiced newborn. *American Journal of Diseases of Children*, [s.l.], v. 118, n. 3, p. 454–458, set. 1969.
- 17. KUITUNEN, I. *et al.* Ursodeoxycholic acid as adjuvant treatment to phototherapy for neonatal hyperbilirubinemia: a systematic review and meta-analysis. *World Journal of Pediatrics*, [s.l.], v. 18, n. 9, p. 589–597, 2022.
- 18. LANE, E.; MURRAY, K. F. Colestase neonatal. *Pediatric Clinics of North America*, [s.l.], v. 64, p. 621–639, 2017.

- 19. LEE, Y. K. *et al.* The significance of measurement of serum unbound bilirubin concentrations in high-risk infants. *Pediatrics International*, [*s.l.*], v. 51, n. 6, p. 795–799, 2009.
- 20. LEUNG, T. S. *et al.* Jaundice Eye Color Index (JECI): quantifying the yellowness of the sclera in jaundiced neonates with digital photography. *Biomedical Optics Express*, [s.l.], v. 10, n. 3, p. 1250–1256, 1 mar. 2019.
- 21. LIEBERMAN, L. *et al.* Impact of red blood cell alloimmunization on fetal and neonatal outcomes: a single center cohort study. *Transfusion*, v. 60, n. 11, p. 2537–2546, 2020.
- 22. MITRA, S.; RENNIE, J. Neonatal jaundice: aetiology, diagnosis and treatment. *British Journal of Hospital Medicine (London)*, [s.l.], v. 78, n. 12, p. 699–704, 2 dez. 2017.
- 23. MORIOKA, I. Hyperbilirubinemia in preterm infants in Japan: new treatment criteria. *Pediatrics International*, [s.l.], v. 60, n. 8, p. 684–690, 2018.
- 24. NATIONALINSTITUTE FOR HEALTH AND CARE EXCELLENCE (NICE). *Jaundice in newborn babies under 28 days: Guidance.* [s.l.]: NICE, 2010. Disponível em: https://www.nice.org.uk/guidance/cg98. Acesso em: 7 abr. 2025.
- 25. OKULU, E. Exchange transfusion for neonatal hyperbilirubinemia: a multicenter, prospective study of Turkish Neonatal Society. [s.l.]: *Turk Pediatri Ars*, 2020. Disponível em: https://turkarchpediatr.org/en/exchange-transfusion-for-neonatal-hyperbilirubinemia-a-multicenter-prospective-study-of-turkish-neonatal-society-131195. Acesso em: 7 abr. 2025.
- 26. OLUSANYA, B. O.; KAPLAN, M.; HANSEN, T. W. R. Neonatal hyperbilirubinaemia: a global perspective. *The Lancet Child & Adolescent Health*, [s.l.], v. 2, n. 8, p. 610–620, 1 ago. 2018.

- 27. ROMANO, D. R. Icterícia neonatal no recém-nascido de termo. [s.l.]: *Handlenet*, 2017. Disponível em: https://hdl.handle.net/10216/10912. Acesso em: 7 abr. 2025.
- 28. SOUZA, C. E. A. de *et al.* A efetividade da fototerapia no tratamento da icterícia neonatal: uma revisão atualizada. *Revista Contemporânea*, [*s.l.*], v. 4, n. 3, p. e3628–e3628, 13 mar. 2024.